
an article for The Smalltalk Report

by Patrick Mueller

Patrick Mueller is a member of the IBM Smalltalk Distributed team in IBM Cary. He co-

authored the HP/IBM submission to OMG for Smalltalk mappings to CORBA. Patrick can

be reached via e-mail at pmuellr@vnet.ibm.com.

Business Phone 919-254-4307

Notes to editor:

For Table of Contents:

With all the interest in the Internet lately, it’s only natural for folks to want to write

applications in Smalltalk to access the vast wealth of information out there. Patrick

provides some introductory information on how to use tcp/ip sockets to access a Gopher

server from IBM Smalltalk. He also describes how the IBM Smalltalk user interface is

programmed through widgets.

Pull Quotes:

If you’re already familiar with Motif Widgets, you’re already familiar with IBM

Smalltalk’s Widgets. If not, don’t worry - it’s a simple and elegant model.

Graphics: I’ve put frames in two locations for graphics. One is for gomenu.tif, the other

for gotext.tif. I’m actually going to send along 4 files: gomenu.tif - color, gomenum.tif -

mono; gotext.tif - color, gotextm.tif - mono. I’d prefer if the color versions can be used,

but use the mono if you must.

Formatting: the only real formatting I’ve done is to mark Smalltalk code with the styles

StCode and StBlock. StCode is used for in-line stuff like Class and method names,

StBlock is used for blocks of code.

Building a Gopher from Sockets and
Widgets
No, this isn’t an article on Cyber-Biology. I’ll be describing how to build an Internet

Gopher client within IBM Smalltalk, using the Widgets user interface programming model

and the sockets communications protocol used on the Internet. Plan on learning a couple

of things after reading the article:

• what an Internet Gopher looks like

• how the Gopher protocol works

• an introduction to socket programming in IBM Smalltalk

• an introduction to user interface programming in IBM Smalltalk

What is Gopher?
First let’s talk about Gopher. If you don’t already know what Gopher is, the best way to

learn is to play with a Gopher client. Ask you local internet guru for a test drive. In case

you don’t have one locally available, here’s a description.

Insert goMenu.tif or goMenuM.tif here.

Figure 1. Sample Gopher Menu

You start up a gopher client by running the gopher program and specifying a gopher

server to start at. The gopher client will contact the server and ask for a list of items.

Those items will be displayed by the gopher client, with some kind of user interface for

you to select items. Each item in the list is typed: common types are

• another gopher menu

• a text file

• a graphics file

When you select one of the items, the gopher client will send a command to get the

appropriate type of item from the server and return it to the client. In the case of another

gopher menu, another menu will be displayed. In the case of a text file, a text editor will

be displayed with that text. You get the picture. It’s a very simple program to use. And

there’s lots of information available. Within IBM, for example, we have over 60 well-

known gopher servers, servicing over 8000 different menu items (sorry folks, this is

primarily IBM-only information).

The Gopher Protocol
The protocol a gopher client and server use to exchange information is one of the simplest

used over the internet. To get a gopher item from a server, the client needs to know three

pieces of information: the name of the server (tcp/ip hostname), the tcp/ip port for the

server, and a selector string. Most gopher servers use port 70. The main menu for a

gopher server uses an empty selector string. So, to get the main menu from a gopher

server, you really only need one piece of information: the name of the gopher server.

The client creates a new tcp/ip socket and connects it to the server at the port requested. It

then writes the selector string, followed by carriage return and linefeed to the socket. At

this point, it starts reading from the socket, terminating when the socket is closed by the

server. The data returned by the server is interpreted depending on the type of the item.

After receiving the data, the client closes the socket.

The most common type of gopher item is a menu; that is the type of item returned for the

main gopher server, when passed an empty selector string. The data returned for a menu

consists of a set of lines, separated by carriage return and linefeed characters, up to the line

which contains nothing but a period (“.”). For each line, the first character is a type

indicator. The rest of the string is tab delimited. The field after the type indicator is a

string to display in the user interface for the item. The next field is the selector. The next

is the server name, and the last is the port. The selector, server name and port are all used

to get that item. The type indicator (first character in the line) indicates what type of item

this is (eg, menu, text, graphics, etc).

For the text type, the data returned from the server is just the text to display back to the

user. For the graphics type, the contents of a GIF or TIFF file might be returned.

Classes implemented
First a little class hierarchy creation. We’re going to implement a class called

GopherItem, with a subclass for each of the gopher data types. GopherItem is defined

with instance variables:

display description of the item to display to the user

selector selector to send to the server

host name of the server

port port number for the server

data data returned by the server

Besides defining accessors for these variables GopherItem contains

• the logic to get the data for an item from a server

• the logic to parse a line of menu information returned from the server

• the logic to determine what type of data a particular line is

We’ll create the following subclasses of GopherItem:

• GopherItemMenu to display menus

• GopherItemSearch to prompt for a search string, and display a resulting menu

(used to search phone books, for instance).

• GopherItemText to display textual information

• GopherItemUnknown to handle Gopher data our client does not understand.

We’ll create a class named Gopher to manage the user interface.

Using TCP/IP Sockets in IBM Smalltalk
Now we’ll actually implement the main processing of the gopher client: connecting to a

server to get the some data.

If you aren’t already familiar with sockets, here’s a brief overview. Sockets are a lot like

file handles. You open them, read from them, write to them, and close them. Except,

instead of having a disk drive to read from or write to, there’s another program over the

network who is reading what you are writing, or writing what you are reading. And

instead of specifying a file name, you specify a host name and a port number to connect to.

The logic to get the data for an item from the Gopher server is implemented in the

instance method GopherItem>>getData. GopherItem supplies instance methods to

return the host, port and selector of the Gopher server we want data from. Example 1

contains the Smalltalk code for this method.

getData first initializes its data to an empty string, and defaults it’s port and selector if

not set. It then obtains an instance of AbtTCPInetHost, AbtTCPPort, and AbtSocket
from the host and port information. AbtTCPInetHost is used to convert host names into

tcp/ip addresses. AbtPort is used to associate a tcp/ip port with a tcp/ip address.

AbtSocket is used to manage the actual socket, based on the AbtPort it was created

with.

Up to this code, we have defined what we want to connect the socket to, but haven’t

actually connected it. Sending connect to the socket will cause the socket to connect to

the server.

Once connected, we send the selector, followed by carriage return and linefeed, then start

reading from the server. As long as the socket is connected, we receive the data from the

socket and append it to the end of a local variable. When the server finally closes the

socket, isConnected will return false. At this point, we close our end and set the data to

the entire string returned from the server.

 getData
 "Set data instance variable to the data returned for the
 gopher menu item."

 | abtHost abtPort abtSock dataChunk allData |

 self data: ''.

 self port isNil ifTrue: [self port: 70].
 self selector isNil ifTrue: [self selector: ''].

 abtHost := AbtTCPInetHost getHostByName: self host.
 abtHost isCommunicationsError ifTrue: [^nil].

 abtPort := AbtTCPPort usingHost: abtHost portNumber: self port.
 abtPort isCommunicationsError ifTrue: [^nil].

 abtSock := AbtSocket newStreamUsingPort: abtPort.
 abtSock isCommunicationsError ifTrue: [^nil].

 abtSock bufferLength: 8192.

 (abtSock connect) isCommunicationsError ifTrue: [^nil].

 (abtSock sendData: (self selector, Cr asString, Lf asString))
 isCommunicationsError ifTrue: [^nil].

 allData := ''.
 [abtSock isConnected] whileTrue: [
 dataChunk := abtSock receive.
 dataChunk isCommunicationsError ifTrue: [^nil].
 allData := allData, dataChunk contents asString
].

 abtSock disconnect.
 self data: allData.

Example 1. GopherItem>>getData method

That’s the only tcp/ip related code in the entire gopher client. Each gopher item subclass

is responsible for interpreting the data received by this code.

Using Widgets in IBM Smalltalk
Widgets are the programming interface used for user interface programming in IBM

Smalltalk. The terminology comes from Motif, upon which the user interface classes are

based on. If you’re already familiar with Motif Widgets, I have real good news for you -

you’re already familiar with IBM Smalltalk’s Widgets. If not, don’t worry - it’s a simple

and elegant model.

Widgets are used to model all the visual building blocks needed to create a user interface:

• the shell, to contain the frame, system menu, title bar, and minimize/maximize

buttons

• main windows to contain the menu bar

• forms and bulletin boards to contain other widgets

• core widgets like buttons, list boxes, text fields, etc.

Each type of widget is a subclass of CwWidget. There are two primary ways to change

the behavior of a widget: through resources and through callbacks.

Resources control the basic state of a widget, such as color and font information. Most

widgets have a unique set of resources associated with them, and resources are inherited

down the CwWidget class hierarchy. Resources are set and queried via instance methods

named after the resource. For instance, to query the width of a widget, send it the message

width.

Callbacks are a way to get feedback from the user when they interact with the system.

Like resources, each widget class implements its own set of callbacks, which are inherited

down the CwWidget class hierarchy. As an example, to be notified when the user presses

a button, the following code may be used.

 buttonWidget
 addCallback: XmNactivateCallback
 receiver: self
 selector: #pressed:clientData:callData:
 clientData: nil.

Each callback has a name, in this case XmNactivateCallback. This particular callback

is invoked when a button is pressed. When the button is pressed, the message

pressed:clientData:callData: will be sent to the object which executed this code (since

the receiver was specified as self). The callback message is passed the widget, the client

data specified when the callback was added (in this case, nil), and an object containing

information specific to this type of callback.

Ok, so those are the basics, let’s dive right into our gopher client. Our user interface is

going to be a new window, with a read-only text field at the top giving a description of the

current gopher menu item we’re viewing and a list box containing the items available on

this gopher menu. Gopher text items will be displayed in a separate window (a

Workspace), which is not described here.

The widgets we’ll need are:

• a shell, to contain the frame, system menu, title bar, etc.

• a form, to contain the text field and list box

• a text field

• a list box

A form is a widget which knows how to resize the widgets contained within it. We’re

using it to allow the user to resize the window and have the widgets contained in the form

automatically resize themselves.

As mentioned before, we’ll be implementing a class called Gopher to handle the user

interface. Gopher is defined with the following instance variables:

data to hold the data associated with the menu items (ie,the selector, server, and port of the

menu items)

listWidget to hold our list box widget

textWidget to hold our text field widget

shellWidget to hold our shell widget

menuStack to keep track of where we came from, so we can backtrack through the gopher.

The instance method createWindow is used to create and setup all the widgets. Example 2

contains the code for this method.

The first thing we do is create a shell window. This is done with the message

CwTopLevelShell class>>createApplicationShell:argBlock:. The first parameter

is the name of the widget. All widgets have a name, which is usually not externally visible

to the user. The second parameter is a block used to set resources when the widget is

created. In this case, we’re going to set the title of the shell window, which will be placed

in the frame’s window bar, and the width of the frame, making it half the size of the

screen.

You might be wondering why we use the argBlock parameter (and the

setValuesBlock: later in the code) to set our resources.

The message to create the shell widget could also have been written as

 shell := CwTopLevelShell
 createApplicationShell: 'gopherMenu'
 argBlock: nil.
 shell
 title: 'Gopher Menu';
 width: (CgScreen default width) // 2

In IBM Smalltalk, widget resources are ‘hot’ - that is, when changed, the user interface is

immediately updated. In order to allow the system to optimize changes to a widget, the

argBlock parameter and setValuesBlock: message are the recommended ways to set

resource values for a widget.

Next, we create the form. Most widgets are created using widget creation convenience

methods named createXXXX:argBlock:, where XXXX is the type of widget to create.

These messages are sent to the widget which will contain the widget to be created. In this

case, we’ll create a form with the name ‘form’, and don’t need to set any resources.

After the widget is created, we send it the message manageChild. This is a Motif-ism,

which you don’t need to be too worried about, but will need to call it after creating your

widgets. Managing and mapping widgets allows some interesting behaviors, such as

causing widgets to instantly appear and disappear as needed.

Contained within the form will be a label widget, created with createLabel:argBlock:.
We’ll set the initial text of the label to a blank string.

Also contained within the form is a list box, created with

createScrolledList:argBlock:. The selectionPolicy resource sets the type of

selection allowed - single select, multiple select, etc. The visibleItemCount resource

sets the initial size of the list box, eg. the list box will be sized to contain 20 items.

As mentioned previously, we’re using a form so that the widgets inside the form can be

automatically resized. In order to make this happen, we have to attach the widgets to the

form.

For each of top, bottom, left and right, there are three basic types of attachment:

• attach the widget to the edge of the form

• attach the widget to a position in the form (position based on 100 - setting to position

50 attaches the widget to the middle of the form)

• attach the widget to another widget.

In our case, we attach the label widget to the top, left, and right sides of the form. We

don’t need to attach the bottom, since a label field has a default height (the height of the

font the text is being displayed in). The list box is attached to the bottom, left and right

sides of the form, and it’s top is attached to the label widget. Note also an offset is

specified for aesthetic reasons (to keep the user interface from looking as if it’s all

crammed together).

Now when the window is resized, the label and text windows will have their widths

changed automatically, since they are attached to the sides. When the height changes, the

label won’t change size but the list box will, since it’s attached to the label widget at the

top and the form on the bottom.

As a further example of attachments, if we change the label widget to attach the bottom as

in:

 bottomAttachment: XmATTACHPOSITION;
 bottomPosition: 25;

the label widget would take the top ¼ of window and the list box would have take the

bottom ¾.

Note that for the listbox, we send setValuesBlock: to the parent of list, not list itself.

This is because a CwScrolledList widget is a list box with a set of scrollbars around it.

It’s the widget (which we don’t see) which contains the list box and scrollbars which we

need to attach to the form.

In order to be able to execute some code when an item in the list is selected, we need to use

a callback. In the code above, the XmNdefaultActionCallback is used on the list

widget. This callback is invoked when an item is double-clicked in the listbox. We

specify sending the message selectItem:clientData:callData: to self. The actual

callback is implemented as follows:

 selectItem: widget clientData: clientData callData: callData
 "Callback sent when an item is selected. Open a viewer
 for the appropriate GopherItem subclass for the item."

 | pos menuItem |
 pos := callData itemPosition.
 menuItem := (self data) at: pos.
 menuItem view: self.

callData is an object containing information specific to this callback; in this case, sending

it itemPosition answers the 1 based offset of the item within the menu which was selected.

The data instance variable of Gopher contains an ordered collection of GopherItem
instances returned from the server. We just get the appropriate menu item and tell it to

view itself.

Finally, we tell the shell to realize itself, which causes it to be displayed, and set our

instance variables.

The contents of the listbox are maintained with the items resource. The data associated

with this resource is an OrderedCollection of Strings. For instance, to set the contents

of a list box to the the items ‘a’, ‘b’, and ‘c’, you would use the following code

 listWidget items: (OrderedCollection with: ‘a’ with: ‘b’ with: ‘c’)

 "Create the gopher menu window"

 | shell main form text list |

 shell := CwTopLevelShell
 createApplicationShell: 'gopherMenu'
 argBlock: [:w| w
 title: 'Gopher Menu';
 width: (CgScreen default width) // 2
].

 form := shell
 createForm: 'form'
 argBlock: nil.
 form manageChild.

 text := form
 createLabel: 'label'
 argBlock: [:w | w
 labelString: ' '
].
 text manageChild.

 list := form
 createScrolledList: 'list'
 argBlock: [:w | w
 selectionPolicy: XmSINGLESELECT;
 visibleItemCount: 20
].
 list manageChild.

 text setValuesBlock: [:w | w
 topAttachment: XmATTACHFORM; topOffset: 2;
 leftAttachment: XmATTACHFORM; leftOffset: 2;
 rightAttachment: XmATTACHFORM; rightOffset: 2
].

 list parent setValuesBlock: [:w | w
 topAttachment: XmATTACHWIDGET; topWidget: text;
 bottomAttachment: XmATTACHFORM; bottomOffset: 2;
 leftAttachment: XmATTACHFORM;leftOffset: 2;
 rightAttachment: XmATTACHFORM; rightOffset: 2
].

 list
 addCallback: XmNdefaultActionCallback
 receiver: self
 selector: #selectItem:clientData:callData:
 clientData: nil.

 shell realizeWidget.

 self listWidget: list.
 self textWidget: text.
 self shellWidget: shell.

 self menuStack: OrderedCollection new.

Example 2. Gopher>>createWindow method

Final Notes
The source for the gopher client is available via anonymous ftp to st.cs.uiuc.edu, and will

work on OS/2 and Windows, with IBM Smalltalk or VisualAge with the Communications

Component.

Insert goText.tif or goTextM.tif here

Figure 2. Example Gopher Text Window

