
JCP and Embedded UI 1 of 5
Patrick Mueller

Java Community Process and Embedded Java
User Interface

Patrick Mueller
IBM WebSphere Device Developer Runtimes Architect
pmuellr@acm.org

This paper is presented as a position paper for the OOPSLA 2003 Workshop
on Pervasive Computing.

Introduction

Java is often presented as a language suited for “Pervasive Computing” and
since there is an entire area of the Java Community Process (JCP)
(http://www.jcp.org) focused on the “embedded” space, namely the J2ME
(Java 2 Micro Edition) technology platform, it seems like a natural place to
look for Java technology relating to Pervasive Computing.

This paper’s focus will be on user interface, and will examine what work the
JCP has done, and has not done, in the user interface area of embedded
java.

What kind of UI is needed for Pervasive Computing?

NIST (http://www.nist.gov/pc2000/) defines Pervasive Computing as:

Shorthand for the strongly emerging trend toward:
- Numerous, casually accessible, often invisible computing devices
- Frequently mobile or imbedded in the environment
- Connected to an increasingly ubiquitous network structure
The aim is for easier computing, more available everywhere it's needed

When I think of pervasive computing, I think of interacting with devices that I
wouldn’t normally think of as computers, but that could easily have computers
embedded in them. Examples are refrigerators, car dashboards, my raincoat,
and my date book. These devices already have a tried-and-true user
interface associated with them, and are typically distinctly different than
computer user interfaces. My refrigerator has no keyboard, my car dashboard
has no mouse, my raincoat has no display, and my date book has no
speakers or microphone.

To venture down the path of all the sorts of user interface that might be
possible is quite a large task, so let’s narrow it down to some obvious ones:

Visual: many devices will have some way of displaying information to the user.
Rather than being a set of windows with menus, icons, scroll bars, and
buttons, it would seem that having a display of controls much like existing
hardware controls is more friendly to the user. Also, because of the coarser

JCP and Embedded UI 2 of 5
Patrick Mueller

tactile systems available (touch screen), visual displays that require fine
control, such as scroll bars and menus, can be quite hard to use.

Tactile: Popular computer tactile interfaces include keyboards, mice, and touch
screens. Of these, only the touch screen is likely to find favor in pervasive
devices. Both mice and keyboards require too much physical real estate as
well as typically having the user be situated in a particular position to allow
comfortable inputting.

Vocal: Voice input, although having been available for years, seems to finally
be taking off to some extent in the voice response market (phone menu
systems). Continued work on recognition software and hardware (microphones
and noise cancellation) will make voice input a more practical option for
pervasive devices in the future.

What does J2ME provide?

Browsing through the list of Java Specification Requests (JSRs) available at
http://www.jcp.org, we can see some number of interesting looking JSRs that
might be appropriate for embedded user interface.

JSRs 37 and 118 – Mobile Information Device Profile 1.0 and 2.0

The Mobile Information Device Profile (MIDP) provides two user interface
stories. One story, the low-level API, is a traditional Graphics on a Canvas
story, which is very similar to doing low-level drawing in AWT or other UI
toolkits. The other story, the high-level API, uses Forms, Items, and
Commands, all specified in a fairly generic fashion.

The low-level API is intended primarily for games, and the high-level API is
intended for applications.

The low-level API literally provides nothing but primitive APIs such as drawing
lines, filling rectangles, and drawing images, and so is not itself a viable
platform to develop high-function applications. Of course, it can be used as a
basis to implement higher-level APIs.

The high level API provides for an interesting set of widgets, however provides
limited layout, sizing, and color control. As such, it provides a highly portable
but generally inelegant UI library.

The intended target for MIDP is cell phones, and is targeted to some extent
for devices with a very small display, and ITU-style (phone) keypads with a
limited number of hard buttons. As such, the resulting API is useful for
devices basically like cell phones, and not much else.

The 2.0 version of MIDP adds additional gaming user interfaces to the low-
level API.

JCP and Embedded UI 3 of 5
Patrick Mueller

JSRs 62 and 216 – Personal Profile 1.0 and 1.1

Personal Profile (PPro) provides much of the java.awt package functionality
from the J2SE platform. While there are some ‘restrictions’ allowed, such as
limiting the size and location of windows, aspects of the specifications are still
very much desktop centered. For instance, the specification calls for
supporting mouse move and drag events, even when a device may not have
an input device that supports this type of action.

Due to the size of the library, PPro requires a level of hardware that is not
appropriate for many pervasive devices.

The 1.1 revision of Personal Profile is currently under development.

JSR 113 – Java Speech API 2.0

This JSR is a the follow-on to the Java Speech API (JSAPI) 1.0 specification,
which was published 5 years ago, in 1998. The 1.0 specification has
numerous non-J2ME friendly aspects, such as requiring speech engines to
synchronize with the AWT event queue, references to the Locale class, and
references to security classes.

Unfortunately, there has been no public activity for this JSR since the Expert
Group formed in early 2001.

JSRs 129 and 217 – Personal Basis Profile 1.0 and 1.1

Personal Basis Profile (PBP) is essentially Personal Profile, without any but the
most primitive Component classes, namely Component, Container, Window,
and Frame. As such, and like the low-level MIDP library, this library isn’t
suitable for writing applications with, although it is perhaps a suitable library to
build another library on top of, with it’s own user interface controls.

The 1.1 revision of Personal Basis Profile is currently under development.

JSR 209 – Advanced Graphics and User Interface

JSR 209 intends on supplying “Swing, Java 2D Graphics and Imaging, Image
I/O, and Input Method Framework” to the Personal Profile and Personal Basis
Profiles. Obviously this is a fairly large story, and the prerequisite of PBP or
PPro rules out all but fairly high-end devices.

Gaming/Multimedia related JSRs

There are also a set of JSRs that relate to gaming, multi-media, and 2D and
3D graphics. While these JSRs certainly might be useful in pervasive
applications, they are not really capable of being the sole user interface
mechanism.

JSR 134 – Java Game Profile
JSR 135 – Mobile Media API

JCP and Embedded UI 4 of 5
Patrick Mueller

JSR 178 – Mobile Game API
JSR 184 – Mobile 3D Graphics API
JSR 226 – Scalable 2D Vector Graphics API

What does J2ME not provide?

So what has the JCP not yet considered?

GUI via markup languages

While markup languages themselves don’t provide any special expressive
power, the fact is that graphic artists instead of programmers will design many
of the user interfaces for pervasive devices. This is because it is often
desirable to emulate an existing physical design or impart a signature design
in the user interface. Graphic artists are not familiar with GUI libraries,
programmers are. However, many graphic artists are now familiar with markup
languages due to HTML and the web. It seems a natural fit to allow a
graphical user interface to be designed largely in a markup language.

Examples where this is already occurring are Mozilla’s XUL
(http://www.mozilla.org/xpfe/xptoolkit/xulintro.html) and HTML itself (for
instance, eating the output of Java Server Pages (JSPs).

Domain-specific libraries

Pervasive user interfaces, which are analogues of physical devices, have
radically different interfaces than what can be provided by typical GUI libraries.
Examples are 3-state buttons which provide different visual appearance for not
pressed, pressed, and just released events; sliders and progress meters
implemented as circular knobs/displays; toggle buttons. While libraries
implementing such abstractions are straightforward to implement, having a
standard library of such widgets would prevent every application developer
from having to develop their own.

Non-standard input devices

This includes ‘hard buttons’, rotary input, pressure sensitive devices, primitive
audio and visual input devices, all manner of text input with limited devices,
including predictive text input, and the entire area of haptics. In some cases,
existing input methodologies can be used to map these input devices. For
instance, hard buttons can be mapped to keystrokes, as can rotary input. But
with some complex haptic devices, no such mapping is suitable.

Middle-tier libraries

In the J2ME world, devices are either as dumb and limited as a cell phone, or
as highly functional as a desktop. J2ME specifically does not have a decent
library for the current crop of PDAs, such as Palm devices, Microsoft PocketPC
devices, and the Sharp Zaurus devices. These devices are more functional

JCP and Embedded UI 5 of 5
Patrick Mueller

that cell phones, however have neither the horsepower to handle desktop
applications, nor can they support desktop semantics.

Some of the characteristics of PDAs not accounted for are: applications that
consume the entire display; collapsible windows due to soft keyboard pop-
ups; desktop integration; automatic screen rotation (portrait->landscape);
desktop synchronization.

As PDAs become more capable, some of the issues may become moot,
however, this also implies that devices such as cell phones will become as
capable as PDAs today, and thus they will suffer from the lack of the middle-
tier libraries.

Skin-ability

These days, everything is skinnable, from your online TV Guide to calculator
faceplates. In many cases, this is done purely for fashion, but in some cases,
this adds a significant usability advantage to a device. Examples include
being able to change the font size to allow us old folks be able to read text on
a little device, and being able to change color schemes to allow reading a
display under a variety of lighting conditions. Note that skin-ability is typically
not provided by a ‘skin’ library, but is intrinsic to a user interface library itself.

Summary

While the existing J2ME JSRs concerning user interface span an interesting
range of devices, from ‘dumb’ cell phones up through desktop computers,
there is a noticeable lack of specifications for mid-level devices.

The good news for researchers, developers and entrepreneurs is that there is
plenty of low fruit to be picked.

