
Debugging Mobile Web
Applications with

weinre
for OSCON 2011

Patrick Mueller
IBM Research Triangle Park, NC

@pmuellr

1

2

© Copyright IBM Corp. 2011
blah blah blah

copy of this presentation available at:

http://muellerware.org/papers/

underlined text in this presentation is a link to a web page

http://muellerware.org/papers/
http://muellerware.org/papers/

resources

• documentation - http://phonegap.github.com/weinre/

• source / issue tracker - https://github.com/phonegap/weinre

• discussion - http://groups.google.com/group/weinre

• Chrome Developer Tools - http://code.google.com/chrome/devtools/docs/overview.html

• this doc gives a good overview of Real Web Inspector

3

http://phonegap.github.com/weinre/
http://phonegap.github.com/weinre/
https://github.com/phonegap/weinre
https://github.com/phonegap/weinre
http://groups.google.com/group/weinre
http://groups.google.com/group/weinre
http://code.google.com/chrome/devtools/docs/overview.html
http://code.google.com/chrome/devtools/docs/overview.html

“weinre” pronunciation

• like “winery”

• not like “weiner” or “wiener”

• I don’t really care

4

deconstruct
project / presention name

• weinre === WEb INspector REmote

• reuses WebKit’s Web Inspector user interface

• works remotely - debug a web page running on a device from your
desktop

• mobile web applications - web pages running in a mobile browser or
in a native mobile app using a browsing control (eg PhoneGap)

• debug those web applications

5

how does it work?

• access a public weinre server or run your own

• add a <script src=> into pages you want to debug; the src
attribute points to a .js file provided by the weinre server

• run the web application on your device

• access the debugging user interface (a web page) from the weinre
server from your desktop

• debug!

6

supported features
• DOM / CSS inspector

• inspect / edit / delete DOM elements and CSS rules

• localStorage / WebSQL inspector

• event timeline

• add your own events to the timeline

• console

• run arbitrary JavaScript code in your web page

7

DOM / CSS inspector

8

sql / localStorage inspector

9

event timeline

10

console

11

not supported

• JavaScript debugging; no breakpoints / pausing / stepping

• most of the networking diagnostics

• most of the resource diagnostics

• profiling

• audits

12

why is <XYZ> not supported?

• in some cases, the work has not been done yet

• in other cases, not possible or very hard, usually because:

• weinre is written using plain old JavaScript

• no JavaScript APIs for breakpoints/stepping JavaScript code

• no JavaScript APIs for low-level resource information

13

demo

find a demo on YouTube:
http://www.youtube.com/results?search_query=weinre

14

http://www.youtube.com/results?search_query=weinre
http://www.youtube.com/results?search_query=weinre

terminology

• debug target - the web page you want to debug

• debug client - the web page showing the Web Inspector user
interface

• debug server - the HTTP server which services as a message
switchboard between the debug target and debug client

15

using weinre

• Two options:

• use debug.phonegap.com, hosted by Nitobi (thanks!)

• download the server and run it yourself

16

http://debug.phonegap.com%0AMovies%20pictured%20-%20Big,%20Edward%20Scissorhands,%209%20to%205,%2012%20Angry%20Men,%20Adaptation,%20Almost%20Famous,%20Monsters%20Inc.,%20The%20Others,%20Black%20Swan,%20Annie%20Hall,%20Rain%20Man,%20Titanic,%20American%20Graffiti,%20A%20Place%20in%20the%20Sun,%20Beetlejuice,%20Blue%20Valentine,%20Ferris%20Bueller's%20Day%20Off,%20Gosford%20Park,%20How%20to%20Marry%20a%20Millionaire,%20Brokeback%20Mountain,%20Inception,%20Good%20Will%20Hunting,%20Cry%20Baby,%20Jaws,%20Dirty%20Dancing,%20Moulin%20Rouge,%20Grease,%20Groundhog%20Day,%20Mystic%20River,%20Romancing%20the%20Stone,%20The%20Sound%20of%20Music,%20The%20Shawshank%20Redemption,%20Kramer%20vs.%20Kramer,%20The%20Graduate,%20The%20King's%20Speech,%20The%20Departed,%20Toy%20Story,%20Interview%20with%20the%20Vampire,%20Eternal%20Sunshine%20of%20the%20Spotless%20Mind,%20Manhattan,%20The%20Muppets%20Take%20Manhattan,%20The%20Shining,%20Up,%20Working%20Girl,%20Willy%20Wonka%20&%20the%20Chocolate%20Factory%0Ahttp://debug.phonegap.com%0A
http://debug.phonegap.com%0AMovies%20pictured%20-%20Big,%20Edward%20Scissorhands,%209%20to%205,%2012%20Angry%20Men,%20Adaptation,%20Almost%20Famous,%20Monsters%20Inc.,%20The%20Others,%20Black%20Swan,%20Annie%20Hall,%20Rain%20Man,%20Titanic,%20American%20Graffiti,%20A%20Place%20in%20the%20Sun,%20Beetlejuice,%20Blue%20Valentine,%20Ferris%20Bueller's%20Day%20Off,%20Gosford%20Park,%20How%20to%20Marry%20a%20Millionaire,%20Brokeback%20Mountain,%20Inception,%20Good%20Will%20Hunting,%20Cry%20Baby,%20Jaws,%20Dirty%20Dancing,%20Moulin%20Rouge,%20Grease,%20Groundhog%20Day,%20Mystic%20River,%20Romancing%20the%20Stone,%20The%20Sound%20of%20Music,%20The%20Shawshank%20Redemption,%20Kramer%20vs.%20Kramer,%20The%20Graduate,%20The%20King's%20Speech,%20The%20Departed,%20Toy%20Story,%20Interview%20with%20the%20Vampire,%20Eternal%20Sunshine%20of%20the%20Spotless%20Mind,%20Manhattan,%20The%20Muppets%20Take%20Manhattan,%20The%20Shining,%20Up,%20Working%20Girl,%20Willy%20Wonka%20&%20the%20Chocolate%20Factory%0Ahttp://debug.phonegap.com%0A
http://www.nitobi.com/
http://www.nitobi.com/

debug.phonegap.com

17

http://debug.phonegap.com
http://debug.phonegap.com

pick a guid / unique id

• weinre does not use any kind of security between debug clients and
targets

• the unique id keeps other people’s debug clients from connecting to
your debug target

• if you want to collaboratively debug, share your unique id with a
colleague

18

run your own server

• download / unzip the “jar” build from
https://github.com/phonegap/weinre/downloads

• run “java -jar weinre.jar --boundHost -all-”

• requires Java

• add the following to your web page, and reload it:
<script src="http://[server-ip]:8081/target/target-script-min.js">
</script>

19

https://github.com/phonegap/weinre/downloads
https://github.com/phonegap/weinre/downloads

run your own server (continued)

• browse to http://localhost:8080

• the “Remote” panel should list your web application in green

• that means it’s connected

• start debugging!

20

http://localhost:8080
http://localhost:8080

connected to your server

21

hard part using your own server:
the server’s ip address

• aka “bound host”

• --boundHost -all- option allows all ip address on the box to
act as server; default is localhost

• server’s ip address goes in the <script src=> element
embedded in your web application

• that ip address must be reachable from your device to your server

• probably not 127.0.0.1 or localhost (maybe for emulator)

22

what’s your server’s ip address?

• Windows command line: ipconfig

• Mac/Linux command line: ifconfig

• weinre on your desktop: http://localhost:8080/client

23

http://localhost:8080/client
http://localhost:8080/client

weinre knows your bound hosts

24

problem: your ip address changes
solution: dynamic dns service

• your ip address probably changes every day

• meaning you need to change the URL in your web pages every day

• pro-tip: use a dynamic dns service with an update client

• now you can use a host name that never changes

25

server command-line options

• see: http://phonegap.github.com/weinre/Running.html

• “--boundHost -all-” allows you to connect to the server from
another machine (default only allows connections from same
machine)

• “--httpPort <number>” allows you to change the server port

26

http://phonegap.github.com/weinre/Running.html
http://phonegap.github.com/weinre/Running.html

running the Mac application

• a Mac application is also available

• runs the server in a window which also displays the Web Inspector
user interface

• built using Eclipse SWT - theoretically possible to port to
Windows / Linux

27

mac app

28

bookmarklet

• possible to inject weinre target code into any web page with a
bookmarket

• instructions available on weinre’s main server page (when you run
the server)

• not trivial to install on iOS or Android, and requires modern version
of Android

29

collaborative debug

• multiple debug clients can connect to a single debug target

• must use a shared unique id

• not well tested

• not a design feature, just the way the web works

30

future

31

should be dim

• WebKit now has Remote Web Inspector baked in
http://www.webkit.org/blog/1620/webkit-remote-debugging/

• RIM shipping Remote Web Inspector for Playbook

• Apple? Don’t know, or if I did, I’d have to kill you, then myself.

• Google? “I'm afraid we have no plans right now to enable this feature.”
http://bit.ly/r1clCt (webkit-dev mailing list)

32

http://www.webkit.org/blog/1620/webkit-remote-debugging/
http://www.webkit.org/blog/1620/webkit-remote-debugging/
http://bit.ly/r1clCt
http://bit.ly/r1clCt

easier / better
PhoneGap integration

• examples:

• auto-inject weinre JavaScript code into your app

• diagnostics for PhoneGap-provided events

• run weinre server IN your app

33

current issues logged

• port the server to node.js, use socket.io for
communications

• allows removal of the “message queue” code in Java and JavaScript

• allows WebSocket usage, for better latency / less overhead
(instead of XHR)

• allows reuse of code between server and browser (wouldn’t be
much though)

34

current issues logged

• extension system that works

• there is an extension mechanism in place today, based on Web
Inspector’s extension mechanism

• allows adding new panels, and any other hacking

• hard/impossible to use; needs a re-write

35

current issues logged

• provide better error handling

• error support not great for mobile devices - “onerror” not yet
ubiquitous

• can hook event handlers to provide try/catch with diagnostics for
callbacks

• catching errors at initial load time is still hard

36

until then

• if you need something fixed or added:

• write a bug - https://github.com/phonegap/weinre/issues

• ask a question - https://groups.google.com/group/weinre

• DIY / fork it - https://github.com/phonegap

37

https://github.com/phonegap/weinre/issues
https://github.com/phonegap/weinre/issues
http://groups.google.com/group/weinre
http://groups.google.com/group/weinre
https://github.com/phonegap/weinre
https://github.com/phonegap/weinre

innards

38

target / server / communication

39

communication

40

• Web Inspector:

• defines JSON-able messages sent between client and target

• provides service framework to hook in message handlers

• provides hooks at start-up time to start your own infrastructure

console.log(“hello, world”)

41

{
 interface: "ConsoleNotify",
 method: "addConsoleMessage",
 args: [
 {
 message: "hello, world",
 level: 1,
 source: 3,
 type: 0,
 parameters: [
 {
 hasChildren: false,
 description: "hello, world",
 type: "string"
 }
],
 },
],
}

message interface / methods

• specified in WebKit via:

• old: WebIDL-ish files (weinre currently using this version),
converted to JSON in weinre build

• new: JSON files

• data sent in messages not defined - “read the source”

42

to implement weinre ...

• target must respond to client’s messages correctly

• target must send events correctly

• basically, implement the target code - for Real Web Inspector, this is
mainly C++, with some in JavaScript (we reuse their JavaScript)

• set up message queue and dispatch interface in target and client

43

HTTP usage

• client and target use the same JavaScript framework for message
sending / receiving

• message queue-ish, REST-ish, implemented with XHR (not
WebSocket)

• requires Cross-Origin Resource Sharing (CORS) to let target
communicate, cross-origin, to weinre server

• target and client do not communicate directly, always through
server

44

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

HTTP / XHR message flow

45

servertarget client

GET messages GET messages

POST message POST message

source

46

reused components

47

• Apache CLI - command line parser used by the server

• Eclipse Jetty - HTTP server used by the server (it’s not a .war)

• Apache Wink JSON4J - JSON code for Java from used by server

• WebKit’s Web Inspector - user interface used by the client

Web Inspector reuse

48

JavaScript: 116 files 48,000 lines 1.7 MB
CSS: 9 files 6,200 lines 140 KB
HTML: 1 file 175 lines 1.2 KB

• Almost all of this is for the “client” - the debugger user interface

• WebKit-specific, won’t run on FireFox, IE, Opera, etc

JavaScript modules

• almost all JavaScript:

• written as CommonJS modules, using modjewel

• written as in classical OO style using scooj preprocessor

• looking at automagically porting from scooj to CoffeeScript using
js2coffee

49

https://github.com/pmuellr/modjewel
https://github.com/pmuellr/modjewel
https://github.com/pmuellr/scooj
https://github.com/pmuellr/scooj
http://ricostacruz.com/js2coffee/
http://ricostacruz.com/js2coffee/

build script

• monster Ant script

• downloads pre-reqs (if not already downloaded)

• compile Java (optional, can also use Eclipse to do that)

• bundle all the junk together

• if we port the server to node.js, will convert to a Makefile

50

