
SLAG447
CONF-9405161--
UC-405
PO
_ -

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

May l-3,1994
Boston, Massachusetts

Convened by
STANF~RDLINEARACCELERATORCENTER

STANF~RDUNIVERSI~,STANFORD,CALIFORNIA 94309

Program Committee

Cathie Dager of SLAC, Convener
Forrest Garnett of IBM

Pat Ryall

Prepared for the Department of Energy
under Contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

SLAC-R-447

Patrick Mueller

Patrick Mueller
originally from
http://www.slac.stanford.edu/pubs/slacreports/reports06/slac-r-447.pdf

Patrick Mueller

Patrick Mueller

Patrick Mueller

Patrick Mueller

Patrick Mueller
this PDF only
contains the
material on ROX

Patrick Mueller

Patrick Mueller

A. Summary

B. Presentations

Tom Brawn

Tom Brawn
Anders Christensen

Ian Collier
Mike Cowlishaw
James Crosskey
Hal German

Klaus Hansjakob
Mark Hessling
Lee Krystek

Luc Lafrance
Linda Littleton
Alan P. Matthews

Patrick J. Mueller

Patrick Mueller
Simon Nash
Edmond Pruul

David Shriver
Timothy Sipples

Hobart Spitz

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

TABLE OF CONTENTS - -

IBM AIX REXX/6000 and
IBM REXX for NetWare
Object REXX-What’s New?
Techniques for Performance Tuning REXX
Interpreters-A Case Study of Regina
REXX/imc: A REXX Interpreter for UNIX
Interesting Corners of REXX
IBM Views on REXX
Choosing a Command Language-
An Application-Centric Approach
News From the REXX Compiler
Using REXX as a Database Tool
Using REXX in a UNIX Environment
to Manage Network Operations
REXX at Simware
REXX Resources on the Internet
Using REXX and Notrix for Lotus
Notes Data Manipulation
Adventures in Object-Oriented
Programming in REXX
ROX-REXX Object extensions
The Object REXX Class Hierarchy
Portable REXX Applications
and Reusable Design
REXX for CICS/ESA
Working (and Playing!) with REXX
and OS/2 Multimedia
Converting MVS/JCL to REXX/TSO

ii

1
13

24
33
41
64

74
78
95

109
125
138

142

166
188
211

223
231

246
250

C. Attendees 265

Summary

--- The fifth annual REXX Symposium for Developers and Users convened in Boston,
Massachusetts, May 2-4. The. fifty-seven attendees -came from Australia, Austria,
England, Norway, Canada and many US states.

This conference has become the premier event for exchanging REXX technical
information, and people were impressed with how much REXX has spread since the last
Symposium. This year we welcomed implementations for new platforms and continued
growth in numbers of users and in importance of uses.

One of the most popular sessions was “Object-Oriented Extensions,” given by Simon
Nash of IBM. Also IBM gave the first public demonstration of their Object REXX for
Windows. And the attendees continued the Symposium tradition of contributing software
and making diskettes available for all.

The Symposium served as a springboard for the REXX Language Association (RexxLA)
which will help promote the use of the language. RexxLA held its first public meeting in
conjunction with this year’s REXX Symposium.

Next year the Symposium will be held at the Stanford Linear Accelerator Center.

1994 Steering Committee:

Cathie Burke Dager
Forrest Gamett
Pat Ryall

ii

Adventures in Object-Oriented
Programming in REXX

Patrick J. Mueller
IBM

166

Adventures in
- Object Oriented -’

Programming
with

(REXX Object extensions)

Patrick J. Mueller
pmuellr@vnet.ibm.com
May 1994, for the 1994 REXX Symposium
Copyright IBM Corp. 1994. All rights reserved.

167

- .

l IBM is a trademark of International
Business Machines Corporation.

l OS/2 is a trademark of International
Business Machines Corporation. R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

168

l What ROX is:

0

0

0

A REXX function package for OS/2

Provides object oriented capabilities
for REXX

An experiment A

l What ROX isn’t:

0

0

0

An interface to existing 00
systems (C++, Smalltalk, SOM)

A new language

An IBM product

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

169

l Classes define:

0 Methods, implemented in REXX

0 Variables, accessible to methods

l Class inheritance
A

0 Classes obtain methods and
variables of inherited classes

0 Multiple inheritance

i Modelled on Smalltalk, but:

0 Classes not 1st class objects

0 No garbage collection

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

170

:* --------- animal class 1-11-111-1
:class animal
:vars name sound

:method init
name = arg(1); sound = arg(2)

:method name
return name

:method sound
return sound

.* . --------- dog class -1-1-11-11
:class dog
:inherits animal

:method init
name = arg(l)
rc = animal.init(self,name,"Bark")

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

171

I

/ *

/ *

rc

/ *

sample.cmd */

load the ROX file animal.rox */
= RoxLoad(wanimal.roxN)

create a dog named Jackson */
dog = RoxCreate(wdogw,wJacksonM)

/ * -> 'Jackson says Bark' */
say .name(dog) Vays" .sound(dog)

/* destroy dog */
rc = RoxDestroy(dog)

A

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

172

l C programming interface allowing
methods to be implemented in C

l Auto-loaded DLLs to allow complete
class definitions to be implemented
in C

l Multithreaded support

l Execution profiling

A

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

173

l Objects created with RoxCreate()

0 arg(1) is the class name

0 arg(2) . . . are initialization
parameters

0 The ‘init’ method of the class
invoked automatically, if present

0 Initialization parameters passed
to init method

l Objects destroyed with RoxDestroy()

0 The ‘deinit’ method of the class
invoked automatically, if present

.

R

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

174

0 RoxCreate() returns a string that is
a reference to an object

l Object reference passed as first parameter
to all methods, and RoxDestroy()

l Object references are plain old REXX
strings - can be kept in a blank delimited
string as in:

ob j s = I1 I1
do i = 1 to 10

objs = objs RoxCreate(ndogn)
end

l Special variables ‘self’ and ‘super’
available to methods which represent
the receiver of the method

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

175

l Message sends are just REXX function
invocations

l Object reference is always the first
parameter

l Function name is method name, prefixed
by if ff .

l Object and method name used to resolve
the class that implements the method

The two move methods invoked below
are probably implemented in different
classes:
xx = .add(aNumber,lOO)
xx = .add(aList,aListItem)

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

176

I

l Objects have as their instance
variables all variables defined
by their class, and its inherited
classes.

l All instance variables apply only
to a particular object - they are
not shared between objects.

l All instance variables are ‘exposed’
when a method is invoked.

l Per-instance variables may be
created with RoxAddVar(). This
provides support for stemmed
variables.

A

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

177

l RoxLoad utility allows classes to
be packaged into their own files

l Multiple classes may be in one file

l Format is:

:include <a ROX file>

:class <class name>

:inherits <class name> . . .

:vars <variable name> aem

:method <method name>
<method code>

:method <method name>
<method code>

- .

R

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

178

I I

l RoxAddClass()
create a class

l RoxClassAddlnherit()
add an inherited class to a
class definition

l RoxClassAddMethod()
add a method to a class definition

l RoxClassAddMethodDll()
add a method (in a DLL) to a
class definition

l RoxClassAddVar()
add an instance variable to a
class definition

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

179

I

l RoxCreate()
creates a new object

l RoxDestroy()
destroys an object

l RoxSend()
send a message to an object

l RoxSendThread()
send a message to an object
on another thread

i RoxClass()
returns class of object

l RoxAddVar()
add a per-instance variable
to an object - used for stems

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

180

I

l RoxLoad.cmd

Calls the ‘builtin’ ROX functions
to load a ‘ROX’ format file

l Roxlnfo.cmd

Prints class information for
a given ROX file

l RoxProf .cmd

Collects and analyzes output
generated from RoxStats()
function to generate timing
information

A

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

181

l list.rox
l wordIist.rox
‘0 setrox
l collect.rox

various collection classes;
collect.rox is an abstract class

l sessionsrox
illustrates multiple inheritance

l spinner.rox
sample threaded class that displays
an in-process spinner for activity

l cmdline.rox
implements a function to read a line
from input with history, editing, etc

l socketrox
usability enhancements for the
rxSock function package

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

182

l Performance
0.05second overhead for
message sends on 25/50 Mz 486
machine.

That’s pretty good, but still
only 20 messages / second.

R

l File i/o
Each invocation of a method opens a
new file handle for a named file.
Unpredictable because of buffering.

Example: file ‘a.file’ opened twice

:method foo
rc = lineout("a.file~yx 11')

x = .foo(something)
x= .foo(something)

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

183

I

l Uses REXX external function interface
for message sends

l Internally, uses
0 RexxStart()
0 variable pool
0 init/term System exits

l Can be used by any REXX-macro-aware
program

l Possible conflicts with programs that
usurp REXX external function exit and
depend on period prefixed functions

.

- .

R

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

184

- .

‘0 Experimenting with 00 and REXX

l Whet your appetite for Object REXX

A

l A way to reuse large-ish chunks of
REXX code, with shared variables

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

185

- .

l Currently at version 1.8

l Available via:

0 anonymous ftp to ftp.cdrom.com
in /pub/os2/program/rexx as
rox.zip

0 Peter Norloff’s OS/2 BBS,

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

186

‘0 Currently at version 1.8

l Available via:

0 anonymous ftp to ftp.cdrom.com
in /pu b/os2/program/rexx as
rox.zip

0 Peter Norloff’s OS/2 BBS

A

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

187

ROX - REXX Object extensions

Patrick Mueller
IBM Software Solutions Division

Cary, North Carolina
pmuellr@vnet.ibm.com

(c) Copyright IBM Corporation 1994.
All Rights Reserved.

April 27, 1994
A

158

Contents

1 Introduction

1.1 What is ROX?

1.2 What ROX isn’t

1.3 Object creation

1.4 Method invocation

1.5 Variables

1.6 Class Inheritance

1.7 self and super

2 Installation and Removal 6

3 Function Reference

3.1 Function Package Functions .

3.2 Class Definition Functions . . .

3.3 Object Lifecycle Functions .

4 Format of .rox Files 10

5 C Programming Interface 11

6 Utilities Provided 13

7 Classes and Testers Provided 14

8 History 16

A Sample .rox file 18

B Sample ROX class usage 21

C Output of previous samples 23

189

1 Introduction

1.1 What is ROX?

ROX is a function package for REXX that allows for object oriented (00)
programming in REXX. You should have some basic familiarity with 00 pro-
gramming before diving into ROX.

ROX allows classes to be defined. The classes have a number of features.

l they may inherit from other classes

l they specify variables that will be maintained for each object created of
the given class

l they specify methods written as REXX code

Classes are defined in files with an extension of .rox. See Format of .rox Files
on page 10 for the format of the .rox files.

1.2 What ROX isn’t

ROX is not a new language - it is simply a function package that can be used
from the OS/2 i REXX language providing some 00 capabilities.

ROX provides NO facilities for interacting with other object oriented systems
such as SOM or Smalltalk.

ROX has no distributed (cross-process, or cross-platform) capabilities.

1.3 Object creation

Objects are created and destroyed with the FtoxCreate(j and RoxDestroy() func-
tions, described in Object Lifecycle Functions on page 9. The RoxCreate() func-
tion takes the name of the class to create the object from, and any number of
additional parameters to initialize the object. The RoxCreate() function returns
an object reference. This object reference is a regular REXX string, with a par-
ticular value which the ROX functions can use to dereference the object. This
object reference is used as the first parameter for method invocation.

When an object is created, the init method for the class is invoked. Likewise,
when an object is destroyed, the deinit method for the class is invoked. If the

‘OS/2 is a trademark of International Business Machines Corporation.

190

1 INTRODUCTION

init or deinit methods are not defined in the class, they will be searched for in
inherited classes.

1.4 Method invocation

Once an object is created, you can send messages to it. This is also commonly
referred to as invoking a method. The message is the name of the method,
along with parameters that the method should be passed. To invoke a method,
use REXX function call invocation. The name of the function is the name of
the method, prefixed by ” .“. The first parameter to the function is an object
reference, and any other method specific parameters can be passed as well.

It’s time for a short example. In this example, we create an object of class dog,
passing an additional parameter on the RoxCreate() function which is the name
of the dog. The init method of the dog class will be invoked, passing the name
as the first parameter. Next, the bark method of the dog class is invoked, in
both function invocation formats available in REXX. Both invocations do the
same thing.

j ackson = RoxCreate(“dog”,“Jackson”)
call . bark jackson
g= .bark(jackson)

As noted before, during object creation, the init message is sent to the object.
In order to allow an object’s inherited classes to initialize themselves, the init
and deinit methods may be invoked as functions whose names are a class name
and the method name, concatenated together, with a “.” in between them. For
example, assuming the dog class inherits from the animal class, the dog init
method can call the animal init method by invoking the function animal.init.

1.5 Variables

Classes specify both the methods that can be used on an object and the state
variables associated with the object. The variables are plain old REXX vari-
ables, whose values are available to methods of the classes. The variables are
non-stem variables, such as name, size, etc,. Stem variables are handled via
per-instance variables (see below). Any number of variables may be associated
with a class (and thus an object).

Per-instance variables are variables that can be added to an object in an ad
hoc manner. For instance, one object of class X might have object variables
t.0, x.1, x.2, where another object of class might have object variables x.U, x.1.

191

1.6 Class Inheritance

Per-instance variables are added to an object with the function RoxAddVar().
Per-instance variables are the only way to store stem variables-with an object -
stem variables can NOT be defined with a class.

When a method is invoked, the variables of the object will be available to the
REXX code of the method. If the value of a variable changes in the method,
the changed value will be saved with the object.

It’s time for another example. In this example, we’ll describe a simple class in
the format acceptable for .rox files. The class is dog, and it has two variables -
name and breed. They will be used to hold the name of the dog, and the dog’s
breed. We also define three methods - name, breed and describe. The name and
breed functions either set or return the current value of the variable, depending
on whether any parameters are passed to them. The describe method prints a
line describing the dog.

:class dog
:vars name breed
: method name

if (a.rgO = 1) then
name = arg(l)

return name
:method breed

if CargO = 1) then
breed = arg(l)

return breed
:method describe

say The dog’s name is” name”. It is art breed”.”
return 1”’

Below is some REXX code that uses the class dog. The result of the method
describe invocation is that the line “The dog’s name is Jackson. It is a Chocolate
Labrador Retriever.” will be printed on the screen.

Jackson = RoxCreat e (“dog”)
x= .narse(Jackson,“Jackson”)
x = . breed(Jackson, “Chocolate Labrador Retriever”)
x = .describe(Jackson)

1.6 Class Inheritance

Classes can inherit other classes in their definitions. This technique expands
the variables and methods available to the class to the set of variables and

192

3 FUNCTION REFERENCE

methods defined in any inherited classes. A class can inherit from more than
one class. ROX has no scoping facility, so if classes are inherited that have the
same method, the method will be available in the derived class (the one that
inherits the other classes), but the actual method invoked is undefined. One of
the methods will be invoked, but it’s not possible to determine which one.

1.7 self and super

Two special variables are available to all methods. They are selfand super. self
refers to the receiver of the method (the object which the methods was invoked
on). super also refers to the receiver of the method, however, if super is used as
the receiver of a method, the method to be invoked will be searched for starting
at the inherited classes of the class of the method currently running. self and
super are similiar to the self and super variables in Smalltalk.

2 Installation and Removal

The ROX REXX function package is contained in the file rox.dll. This file
needs to be placed in a directory along your LIBPATH. To get access to the
functions in the ROX function package, execute the following REXX code:

rc = RxFuncAdd(“RoxLoadFuncs” ,“rox” ,“RoxLoadhlI1cs”)
rc = RoxLoadFuncs (1

To unload the DLL, you should first call the BoxDropF’uncs() function, then
exit all CMD.EXE shells. After exiting all the command shells, the DLL will
be dropped by OS/2 and can be deleted or replaced.

3 Function Reference

The functions provided by the ROX function package fall into the following
categories:

l function package functions

l class definition functions

l object lifecycle functions

193

3.1 Function Package Functions

3.1 Function Package Functions

The following functions load, drop and query the version number of the ROX
function package.

RoxLoadFuncs() - load the ROX function package

rc = RoxLoadFuncs (>

Loads all the functions in the ROX package.

If ANY parameters are passed to this function, it will bypass the program, au-
thor, and copyright information normally displayed. All parameters are ignored
(except to determine whether or not to bypass displaying the information).

RoxDropFuncs() - drop the ROX function package

rc = RoxDropFuncs (>

Drops all the functions in the ROX package.

RoxVersion() - returns version number of the ROX function package

vers = RoxVersionO

Returns the current version number of the ROX package.

RoxStats() - generates execution profile info

rc = RoxStats(<parm>)

This function can be used to generate profile information on stderr. A parameter
should be passed to start profile information, no parameter should be passed to
stop profile information. For example:

rc = RoxStats(““) /* start profiling */
rc = RoxStatsO /* end profiling */

The profile information can be analyzed with the RoxProf.cmd utility.

Returns “” .

194

3 FUNCTIONREFERENCE

3.2 Class Definition Functions

The following functions are used to add class definitions to the system. Generally
you will only need to use FtoxLoad() and RoxQueryClassLoaded(). The other
functions are used by RoxLoad() to to load .rox files.

RoxLoad() - load class definitions in a .rox file

rc = RoxLoad(roxFilelame)

This function loads the named file as a class definition. See the section of .rox
file definitions for the layout of the file.

This function is implemented as a REXX .cmd file.

RoxQueryClassLoaded() - query whether class is loaded
R

boo1 = RoxQueryClassLoaded(class8sme)

Returns 1 if the class named className is available in the system. Returns 0
otherwise.

RoxAddClass() - add a class

rc = RoxAddClass(classIfame)

This function adds the named class to the system.

RoxClassAddInherit() - add an inherited class to a class definition

rc = RoxClassAddInherit(class8ame,inheritedClassRame~

This function specifies that the class named className should inherit from the
class named inheritedClassName.

RoxClassAddMethod() - add a method to a class definition

rc = RoxClassAddMethod(classlOame,methodRame,methodCode)

This function adds the named method, with the REXX code for the method to
the named class.

195

3.3 Object Lifecycle Functions

RoxClassAddMethodDll() - add a method (in a DLL) to a class defi-
nition

rc = RoxClassAddMethod(classlDame,metho~ame,dlllame,entryPoint)

This function loads the dll, gets the address of the function given with the name
entrypoint, and adds this to the named class.

RoxClassAddVar() - add an instance variable to a class definition

rc = RoxClassAddVar(classlame,var8eme)

This function adds the named instance variable to the named class.

3.3 Object Lifecycle Functions

RoxCreate() - create an object

object = RoxCreate(classkme<,plC,p2< . . . >>>)

This function creates an object of the class named className. Any number of
parameters, specific to the class, can be passed.

RoxDestroy() - destroy an object

rc = RoxDestroy(object)

This function destroys an object.

RoxSend() - send a message to an object

result = RoxSend(messageBame,object,c,pic,p2<. . . >>>)

R

This function sends the named message to the object specified. Any number of
parameters, specific to the message and class, can be passed.

196

4 FORMAT OF .ROX FILES

RoxSendThread() - send a message to an object

result = RoxSendThread(messagelPame,object,<,pl<,pZ<. . . >>>I

Same as RoxSend(), but starts a new thread to process the message. No useful
return value is returned.

RoxClass() - return class of given object

class = RoxClass(object)

This function returns the name of the class of the object.

RoxAddVar() - add a variable to an object

result = RoxAddVar (ob j ect , varlPame)

This function will the named variable to the set of instance variables associated
with the object. Be careful not to add extra blanks to varName when passing it
in. The characters in the variable name, up to the first ” .“, will be uppercased,
to conform with REXX variable conventions. The remainder of the variable
name is left as is.

4 Format of .rox Files

Classes are defined in files with an extension of .rbx. A .rox file may contain
one or more class definitiona.

Classes defined in .rox files may be loaded by using the RoxLoad function (see
Utilities Provided on 13).

The format of .rox files is a tagged file. The character ‘:’ in column one indicates
a tag. The rest of the line after the ‘:’ indicates the type of tag.

The characters ‘:*‘, when located in column one, indicate a comment.

The following tags may be used in a .rox file:

*include <file> .

This tag indicates that the file specified in the tag should be loaded as a .rox
file. Useful for including inherited class definitions from separate files.

A

197

:class

This tag indicates the start of a new class definitions. Any :inherits, :vars,
and :method tags following this tag, up to the end of the current .rox file, are
associated with this class,

: inherits <class> <class> . . .

This tag indicates the classes that should be inherited from. More than one
class may be specified. This tag may be used more than once within a class
definition.

:vaJTs aKLr> <var> . . .

This tag indicates the variables associated with the class. More than one variable
may be specified. This tag may be used more than once within a class definition.
Note stem variables may NOT be used. Use RoxAddVar() to add stem variables
to an object.

:method <methodName>

This tag indicates that the code for the method named <methodName> follows.
The code for the method ends at the next tag (including :* comment), or end
of He.

5 C Programming Interface

ROX methods can be implemented in compiled languages, such as C, via a
DLL. The function RoxClassAddMethodDll() adds a method to a class that
points to a function in a DLL. The function in the DLL must have the following
signature:

/*--
* typedef ior function that handles method invocation
*--~/

typedef ULOBG APIEBTRY RoxMethodHandlerType(
void *object,
PUCBAR name,
ULOHG =gc,
PRXSTRIBG argv,
PRXSTRIBG retString
1;

A

The parameters passed to the method are:

.

198

5 CPROGRAMMINGINTERFACE

object a pointer to the ROX object receiver

name the name of the method

argc the number of arguments passed to the method

argv array of RXSTRINGs that make up the parameters

retstring pointer to the return value

Most of these parameters will be familiar to those of you who have written
external functions for REXX in C. The only new one is the object parameter.
It can be used in the following functions:

ULOBG RoxVariableGet(
void *object,
PRXSTRIBG name,
PRXSTRIlG value
1;

ULOBG RoxVa.riableSet(
void *object,
PRXSTRIlG name,
PRXSTRIHG value
);

The functions above are used to query and set variables for an object. The
functions return 0 when successful, !O when not successful. The data pointed to
by the value parameter returned from RoxVariableGet() must not be modified.

A sample of a compiled class is provided in roxsem.c.

A DLL can provide a self-loading function named RoxDllEntryPoint, with the
following function signature.

ULOlG APIEBTRY RoxDllEntryPoint(
ULOBG init
1

R

Currently the init parameter is ignored.

This function gets called when the REXX function RoxLoadDLL() is invoked.
This function takes the name of the DLL (usually sans “.DLL”, although you
may specify an absolute path, including the ” .DLL” s&ix) and calls the Rox-
DllEntryPoint function.

199

This function in the DLL can call any of the functions defined in the ROX
function package through their C bindings. The call is made as if the call was
being made to a REXX external function. For example, to call RoxAddClaas(),
you invoke it in C ss:

RXSTRIBG panu, result;

parm.strptr = "myClassBame";
parm.strlength = strlen(perm.etrptr);

RoxAddClass(BULL,l,kparm,BULL,&result);

Note that the function name and queue name (first and fourth parameters) may
be passed as NULL.

Be careful how the return value is freed. See the sample r0xsem.c code for
examples.

Two platform independent functions are provided to allocate and free memory.
The functions are:

void APIEITRY *osMalloc(
int size
1;

void APIEBTRY osFree(
void *ptr
1;

The include file “r0xapi.h” prototypes these functions, and the library “rox.lib”
contains them.

6 Utilities Provided

The following utilities are provided with ROX:

RoxLoad.cmd

A

This program can only be used as a REXX function. It can not be called from
the OS/2 command line. One parameter must be passed to the function - the
name of a .rox file to load. The file will be searched for in the current directory,
and then the directories specified in the ROXPATH environment variable.

200

7 CLASSES AND TESTERS PROVIDED

RoxInfo.cmd

Prints a short reference of the class definitions in .rox files. Multiple .rox files
may be passed as parameters, and wildcards may be specified. For every class
in the .rox file, the following information will be provided:

l Classes inherited by the class. These classes will be listed in an indentation
style which indicates the tree of class inheritance.

l Variables defined and inherited by the class. Inherited variables are
marked with a prefix of “*“.

l Methods defined and inherited by the class. Inherited methods are marked
with a prefix of ” *“.

A

RoxProf.cmd

Analyzes the profile information generated by RoxStats(). Use “RoxProf ?” for
help.

7 Classes and Testers Provided

list .rox

Implements a simple list class. The program testcoll.cmd tests this class, by
passing it a parameter of “list”. The list class inherits the collection class in
collect.rox.

wordlist .rox

Implements a simple list class, similiar to the list class. The difference is that
the list class can contain arbitrary strings, whereas the wordlist class can only
contain strings with no blanks in them. The program testcoll.cmd tests this
class, by passing it a parameter of “wordlist”. The wordlist class inherits the
collection class in collect.rox.

201

set.rox

Implements a simple set class. The program testcoll.cmd tests this class, by
passing it a parameter of “set”. The set class inherits the collection class in
collect.rox.

collect .rox

Implements a simple collection class, that can be inherited by other, more spe-
cific collection classes, and will provide additional capabilities.

sessions.rox

This file implements some of the classes from Roger Sessions’ book on 00 with
C and C++ (reference included in the .rox file). The program sessions.cmd tests
the classes.

spinner.rox

This class implements a character spinner, which can be used ss a progress
indicator. Also uses roxsem.dll. This class is tested with testspin.cmd. The
demo shows code testing a collection along with a spinner running independently
in another thread.

testthrd.cmd

This program tests the thread capabilities of ROX.

cmdline.cmd

This program uses cmdline.rox as a command line reader with history. Use the
up and down arrows to cycle through previous lines entered.

roxsocks.cmd & roxsockc.cmd

These programs demonstrate tcp/ip server and client programs X socket class
(in socket.rox).

202

8 HISTORY

8 History

04/14/94 - version 1.8

l fixed problem with super calls

l removed RoxVarSynch()

l added RoxAddVar() and per-instance variables

l cut execution time in half with new memory management scheme

l added RoxStats() and RoxProf.cmd

01/06/94 - version 1.7

l minor documentation cleanup

l cleanup of internal structure of ROX - no external changes - most notably,
no performance changes

10/22/93 - version 1.6

l fixed infinite loop when no variables set in an init method - ObjectSaveS-
tate/RoxStemSynch ping-ponged. Reported by Zvi Weiss as a problem
when a syntax error occurred in an init method.

l changed compiled classes/methods stuff to have just one type of class, and
either compiled or REXX macros. Compiled macros added with RoxClas-
sAddMethodCompiled().

09/14/93 - version 1.5

l more thread reentrancy fixes

l added compiled class capability

08/31/93 - version 1.4

l added RoxSendThread() function

l first attempt at making everything thread reentrant (still some more to
go>.

R

203

08/27/93 - version 1.3

l print error when invalid object reference is passed to a method

l added exception handling, to try to catch method invocation on objects
which are no longer alive

08/24/93 - version 1.2

l fixed problems with m-adding and m-registering classes and methods

08/22/93 - version 1.1

l fixed super behaviour

l added multiple inheritance capability

l added class-specific init and deinit methods

l added RoxStemSynch() - requires user notify the system when stem vari-
ables are added or dropped as instance variables

l added R,oxInfo.cmd utility

l documentation turned into .inf file and enhanced

08/18/93 - version 1.0

x

l initial release

204

A SAMPLE .ROX FILE

A Sample .rox file

Below is a the ‘sessions.rox’ file, which contains class defintions inspired by
Roger Sessions’ book on class development.

:*---
:* REXX Object extensions :
:* classes described in Roger Seaaione’ book “Class Construction in
:* C and C++“, Prentice-Hall, ISBN 0-13-630104-S.
:e---

: class performer

: vars minsalary

:method setHinimumSalary
minsalary = ax-g(l)

if (0 = datatype(minSalary,‘W’)) then
8inSalary = 1000

return self

:method bargain
say ” I get” minSalary * 2 “dollars a performance.”

return self

: class animal

:vars name sound soundTimee

:rethod init
name = a.rg(l)
soundTimes = arg(2)
sound = erg(J)

if (name - ““1 then
name = “unnamed”

R

if (0 = datatype(soundTimes,“Y”)) then
soundTimes = 1

.

205

if (sound = "") then
sound = "..."

return

:method says
aay name "says:"

do i = 1 to soundTimes
say '1 "sound

end

return self

:class dog

: inherits animal performer

:method init
rc = animal.init(self,arg(l),arg(2),arg(3))
return

:method scratch
say 'I Ooooh... what an itch."
return self

:class littleDog

:inherits dog

:method init
rc = dog.init(self,arg(l),arg(L?),arg(3))
return

:method trick
eay " Watch my trick: I can roll over."
return self

A

:class bigDog

206

I

A SAMPLE .ROX FILE

:inherits dog

:method init
rc = dog.init(self,arg(l),arg(2),arg(3))
return

:method trick
may " Watch my trick: I can fetch the letter carrier."
return self

: l %%%%%%%%- %PP%P%PP%P%%%%%P%P%%%%E%IpIppIp

:class UsedCarDealer

:inherits animal

:method init
rc = animal.init(self,arg(l),arg(2),arg(3))
return

R

:method makeSale
say " . . . and only $500 more if you want the wheels."
return self

207

B Sample ROX class usage

Below is a the ‘seasions.cmd’ file, which uses the classes defined in the ‘ses-
sions.rox’ file.

/* ---
l sessions.cmd :
*--
l 08-21-93 originally by Patrick J. Mueller
+---*/

say "testing the Sessions classes"

if RxFuncGuery("RoxLoadFuncs") then
do
rc = RxFuncAdd("RoxLoadFuncs","Rox","RoxLoadFuncs")
rc = RoxLoadbcsO
end

R

rc = time("r")

rc = RoxLoad("sessions.rox")

Frenchie = RoxCreate("anima1" t "Frenchie", 1, "Grrrrrr")
Rover = RoxCreate("dog". "Rover", 1, "Uoof")
Fifi = RoxCreate("littleDog", "Fifi" 2, "bov vov")
Rex = RoxCreate("bigDog", "Rex",' 4, "BOY WOW")
HonestBob = RoxCreate("usedCarDealer", "HonestBob", 1, "Buy this deal of a car!")

g- .setMinimumSalary(Rex,30)
g- .setMinimumSalary(Pifi,20)

8 = .says(Frenchie)
say

8’ . says (Rover)
say

g = .says(Fifi)
g- .scratch(Fifi)
8 = .trick(Fifi)
g- .bargain(Fifi)
say

g- .says(Rex)
g- .scratch(Rex)
g- .trick(Rex)

.

208

B SAMPLE ROX CLASS USAGE

g- .bargain(Rex)
say

g = .says(HonestBob)
g- .makeSale(HonestBob)

209

C Output of previous samples

Below is a the output of running the ‘seasions.cmd’ file

testing the Sessions classes
Frenchie says:

Grrrrrr

Rover says :
Yoof

Fifi says:
bov vov
boil vov
Ooooh.. . vhat an itch.
Watch my trick: I can roll over.
I get 40 dollars a performance.

A

Rex says:
BOY YOU
BOY WOW
BOW YOU
BOY YOU
Ooooh... vhat an itch.
Watch my trick: I can fetch the letter carrier.
I get 60 dollars a performance.

HonestBob says:
Buy this deal of a car!
. . . and only $500 more if you vant the vheels.

210

Patrick Mueller

	slac-r-447-Frontmatter
	rexx94-001
	rexx94-002
	rexx94-003
	rexx94-004
	rexx94-005
	rexx94-006
	rexx94-007
	rexx94-008
	rexx94-009
	rexx94-010
	rexx94-011
	rexx94-012
	rexx94-013
	rexx94-014
	rexx94-015
	rexx94-016
	rexx94-017
	rexx94-018
	rexx94-019
	rexx94-020
	rexx94-021

